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the case here, it arises due to the fact that P(yH | yF, h, f, q) = P(yH | h, q). Similarly, in [Wolpert

1995a] it is shown that because P(h | d, f) = P(h | d), E(C | d) is a non-Euclidean inner product be-

tween the (H-indexed) vector P(h | d) and the (F-indexed) vector P(f | d).

2. The latter point follows from the following identities:

For the optimal algorithm, whose guessing is governed by a delta function in Y, the variance

is given by

        Σd P(d | m, q)  [E(YH
2 | d, q)  -  E2(YH | q, m)]

=

        Σd P(d | m, q)  [E2(YF | d, q)  -  E2(YF | q, m)].

In addition, the covariance is given by

   Σd,yF,yH
 P(yH | d, q) P(yF | d, q) P(d | m, q)  ×  [yH - E(YH | q, m)]  × [yF - E(YF | q, m)]

=

Σd P(d | m, q)  ×  [E(YF | d, q) - E(YF | q)]  × [E(YF | d, q) - E(YF | q)].

3. Note that E(C | f, H = E(H | f, m, q), q) for quadratic loss is ΣyH,yF
 L(yH, yF) f(q, yF)

∫ dh P(h | d) P(d | f, m) h(q, yH). However this just equals E(C | f, m, q), rather than (as for logarith-

mic scoring) E(C | f, m, q) minus a variance term. This difference between the two cases reflects

the fact that whereas expected error for loss functions is linear in h in general, expected error for

scoring rules is not.
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involve things like model mis-specification in the learning algorithm.)

2) Investigate the real-world manifestations of the “bias-variance” trade-off for the logarithmic and

quadratic scoring definitions of bias and variance used here.

3) See if there are alternative definitions of bias and variance for logarithmic and quadratic scoring

that meet our desiderata. More generally, investigate how unique bias-plus-variance decomposi-

tions are.

4 Investigate what aspects of the relationship between C and the other random variables (like YH

and YF) are necessary for there to be a bias-plus-variance decomposition for E(C | f, m, q) that

meets conditions (i) through (iv) and (a) through (c). Investigate how those aspects change as one

modifies z and/or the conditions one wishes the decomposition to meet.

5) The EBF provides several natural z-dependent ways to determine how “close” one learning al-

gorithm is to another. For example, one could define the distance between learning algorithms A

and B,∆(Α, Β), as the mutual information between the distributions P(c | z, A) and P(c | z, B). One

could then explore the relationship between∆(A, B) on the one hand, and how similar the terms in

the associated bias-plus-variance decompositions are, on the other.

6) Investigate the “data work” for other z’s besides {m, q} and/or other C’s besides the quadratic

loss function. In particular, for what C’s will all our desiderata be met and yet the intrinsic noise

be given exactly by the error associated with the Bayes-optimal learning algorithm?

7) Instead of going from a C(F, H, Q) to definitions for the associated bias, variance, etc., do things

in reverse. I.e., investigate the conditions under which one can “back out” to find an associated C(F,

H, Q), given arbitrary definitions of bias, intrinsic noise, variance and covariance (arbitrary within

some class of “reasonable” such definitions).

FOOTNOTES

1. Note that if L(., .) is a symmetric function of its arguments, this expression for E(C | f, h, q) is a

non-Euclidean inner product between the (Y-indexed) vectors f(q, .) and h(q, .). Such inner prod-

ucts generically arise in response to conditional independencies among the random variables. In
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just before Eq. (13). In addition, define

E( F2(., y) | z) ≡  Σq ∫ df P(f, q | z)× f2(q, y) ,

E( H2(., y) | z) ≡  Σq ∫ dh P(h, q | z)× h2(q, y) ,

and

E( F(., y) H(., y) | z)≡  Σq ∫ df dh P(h, f, q | z)×  f(q, y) h(q, y) .

Then we can write

(14)E(C | z)  =  σqs;z + biasqs;z + varianceqs;z  - 2covqs;z,

where

σqs;z  ≡ Σy  { E( F2(., y) | z)  -  [ E( F(., y) | z) ]2 },

biasqs;z ≡  Σy [P(YH = y | z) - P(YF = y | z)]2,

varianceqs;z ≡  Σy { E( H2(., y) | z)   -  [ E( H(., y) | z ]2 },

and

covqs;z ≡   Σy { E( F(., y) H(., y) | z)  -   E(F(., y) | z)  ×  E(H(., y) | z) }.

As usual, these decompositions meet essentially all of desiderata (a) through (c).

X   FUTURE WORK

Future work consists of the following:

1) Investigate the real-world manifestations of the Bayesian correction to bias-plus-variance for

quadratic loss. (For example, it seems plausible that whereas the bias-variance trade-off involves

things like the number of parameters involved in the learning algorithm, the covariance term may
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h to equal f always, regardless of d. Accordingly (see desideratum (a)), the intrinsic noise term

must equal zero.

To determine the bias term for quadratic scoring, employ the same trick used for logarithmic

scoring to write bias asE(C | f = Opt(E(F | z)), h =Opt(E(H | z)), q). Again as with logarithmic

scoring,for anyX-condition distribution overY, u, Opt(u) = u. Accordingly, for quadratic scor-

ing, our bias term is E(C | f = E(F | z), h = E(H | z), q). For z = {f, m, q}, this reduces to

E(C | f, h = E(H | f, m, q), q)  = Σy  [ f(q, y) - E( H(q, y) | f, m, q) ]2:

biasqs;f,m,q   =  Σy [P(YF = y | f, m, q) - P(YH = y | f, m, q)]2.

As with logarithmic scoring, we then set variance to be the difference between E(C | f, m, q)

and the sum of the intrinsic noise and bias terms. So for quadratic scoring,

E(C | f, m, q)  =  σqs;f,m,q + biasqs;f,m,q + varianceqs;f,m,q ,

where

σqs;f,m,q  ≡  0,

biasqs;f,m,q ≡  Σy [P(YH = y | f, m, q) - P(YF = y | f, m, q)]2,  and

varianceqs;f,m,q ≡ Σy  ∫ dh P(h | f, m, q) [h(q, y)]2   - Σy  [ ∫ dh P(h | f, m, q) h(q, y) ]2 .

As usual, these are in agreement with desiderata (a) through (c). Interestingly, biasqs;f,m,q is the

same as the bias2 for zero-one loss for z = {f, m, q} (see [Kohavi and Wolpert 1196, Wolpert and

Kohavi 1996).

ii)  The arbitrary z decomposition

To present the general-z case, recall the definitions ofE( F(., y)  |  z) andE( H(., y)  |  z) made
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= Σq ∫ df dh Σd P(q | z) P(f | q, z) P(d | f, q, z) P(h | d, q, z)

 f(q, y) ln [h(q, y)].

Then simple algebra verifies the following:

(13) E(C | z) =σls;z + biasls;z + variancels;z + covls;z,

where

σls;z ≡  −Σy E( F(., y) |  z)  ln[ E( F(., y)|  z)],

biasls;z ≡  −Σy E( F(., y)  |  z)

variancels;z ≡  −Σy E( F(., y)  |  z)   { E( ln[H(., y)]  |  z)   -   ln[ E( H(., y)  |  z) ] },

and

covls;z ≡ −Σy  E( F(., y) ln[ H(., y) ]  |  z)   -    E( F(., y)  |  z) ×  Ε( ln[ H(., y) ] |  z).

Note that in Eq. (13) we add the covariance term rather than subtract it (as in Eq. (2)). Intuitive-

ly, this reflects the fact that -ln(.) is a monotonicallydecreasing function of its argument, in con-

trast to (.)2. However even with the sign “backward” the covariance term as it occurs in Eq. (13)

still means that if the learning algorithm tracks the posterior  - if when f(q, y) rises so does h(q, y)

-  then the expected cost is smaller than it would be otherwise.

IX   BIAS PLUS VARIANCE FOR QUADRATIC SCORING

i) The {f, m, q}-conditioned decomposition

In quadratic scoringC(f, h, q) =Σy [f(q, y) - h(q, y)]2. This is not to be confused with the

“quadratic score function”, which has C(yF, h, q)  =  1 -Σy [h(q, y) -δ(y, yF)]2. This score function

can be used when one only has a finite test set, which is not the case for quadratic scoring. (See

[Bernardo and Smith 1994].) Analysis of bias plus variance decompositions for the quadratc score

function is the subject of future work.

For quadratic scoring, for z = {f, m, q}, the lower bound on an algorithm’s error is zero: guess

ln  [ —————— ] ,
E(F(., y) | z)

E(H(., y) | z)
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would be the average difference between h and the average h,

− ∫ dh P(h | f, m, q) Σy E(H | f, m, q) ln[h(q, y)].

(Cf. the formula at the beginning of this section giving E(C | f, m, q) for logarithmic scoring.)

This can be rewritten as

−Σy  { Σd'  P(d' | f, m)∫ dh P(h | d') h(q, y)} Σd P(d | f, m)∫ dh P(h | d) ln[h(q, y)]

However consider the case where P(h | d) =δ(h - f) for all d for which P(d | f, m)≠ 0. With this

alternative definition of variance, in such a situation we would have the variance equalling

−Σy f(q, y) ln[f(q, y)] = σls;f,m,q, not zero. (Indeed, just having P(h | d) =δ(h - h') for some h' for

all d for which P(d | f, m)≠ 0 suffices to violate our desiderata, since this will in generalnot result

in zero “variance”.) Moreover, in this scenario, the variance would also equal E(C | f, m, q). So for

this scenario, bias = E(C | f, m, q) - variance -σls;f,m,q would equal−σls;f,m,q, not zero. This violates

our desideratum concerning bias.

Yet another possible formulation of the variance would be (in analogy to the formula we pre-

sented above for logarithmic scoring intrinsic noise) the Shannon entropy of the average H,

E(H | z). But again, this formulation of variance would violate our desiderata. In particular, for this

definition of variance, having h be independent of d would not result in zero variance.

iii) Corrections to the decomposition for when z ≠ {f, m, q}

Finally, just as there is an additive Bayesian correction to the {f, m, q}-conditioned quadratic

loss bias-plus-variance formula, there is also one for the logarithmic scoring formula. As useful

shorthand, write

E( F(., y)  |  z)≡ Σq ∫ df P(f, q |  z) ×  f(q, y)

=  Σq ∫ df   P(q | z) P(f | q, z)  f(q, y) ,

E( H(., y) |  z) ≡ Σq ∫ dh P(h, q | z) ×  h(q, y) ,

= Σq ∫ dh   Σd ∫ df P(q | z) P(f | q, z) P(d | f, q, z) P(h | d, q, z)   h(q, y) ,

E( ln[H(., y)]  |  z) ≡ Σq ∫ dh P(h, q | z) ×  ln [h(q, y)]

= Σq ∫ dh   Σd ∫ df P(q | z) P(f | q, z) P(d | f, q, z) P(h | d, q, z)   ln[h(q, y)] ,

and

E( F(., y) ln[H(., y)]  |  z)≡ Σq ∫ df dh P(h, f, q |  z)  ×  f(q, y) ln [h(q, y)]
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(12)  E(C | f, m, q)  = σls;f,m,q + biasls;f,m,q + variancels;f,m,q.

It is straightforward to establish that variancels;f,m,q meets the requirements in desideratum (c).

First, consider the case where P(h | d) =δ(h - h') for some h' (this delta function is the Dirac delta

function). In this case the term inside the curly brackets in Eq. (11) just equals ln[h'(q, y)] -

ln[h'(q, y)] = 0. So variancell  does equal zero when the guess h is independent of the training set d.

(In fact, it equals zero even if h is not-single-valued, the precise case (c) refers to.) Next, since the

log is a concave function, we know that the term inside the curly brackets is never greater than zero.

Since f(q, y)≥ 0 or all q and y, this means that variancels;f,m,q≥ 0 always.

Finally, we can examine the P(h | d) that make variancell  large. Any h is an |X|-fold cartesian

product of vectors living on |Y|-dimensional unit simplices. Accordingly, for any d, P(h | d) is prob-

ability density function in a Euclidean space. To simplify matters further, assume that P(h | d) is

deterministic, so it specifies a single unique distribution h for each d, indicated by hd. Then the term

inside the curly brackets in Eq. (11) equals

Σd  P(d | f, m)  ln[hd(q, y)] −  ln[ Σd P(d | f, m) hd(q, y) ].

This is the difference between an average of a function and the function evaluated at the average.

Since the function in question is concave, this difference grows if the points going into the average

are far apart. I.e., to have large variancels;f,m,q, the hd(q, y) should differ markedly as d varies. This

establishes the final part of desideratum (c).

ii) Alternative {f, m, q}-conditioned decompositions

The approach taken here to deriving a bias-plus-variance formula for logarithmic scoring is not

“perfect”. For example, the formula for variancels;f,m,q is not identical to the formula forσls;f,m,q

under the interchange of F with H (as is the case for the variance and intrinsic noise terms for qua-

dratic loss). In addition, variancels;f,m,q can be made infinite by having hd(q, y) = 0 for one d and

one y, assuming both f(q, y) and P(d | f) are nowhere zero. Although not surprising given that we’re

interested in logarithmic scoring, this is not necessarily “desirable” behavior in a variance-like

quantity.

Other approaches tend to have even more major problems however. For example, as an alter-

native to the approach taken here, one could imagine trying to define a “variance” first, and then

define bias by requiring that the bias plus the variance plus the noise gives the expected error. It is

not clear how to follow this approach however. In particular, one natural definition of variance
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E(C  |  f  = Opt(E(F | z)),  h  =Opt(E(H | z)),  q,  m).

Unlike the original expression for bias2 for quadratic loss, this new expression can be evaluated

even for logarithmic scoring. TheOpt(.) function is different for logarithmic scoring and quadratic

loss. For logarithmic scoring, by Jensen’s inequality,Opt(u) = u. (Scoring rules obeying this prop-

erty are sometimes said to be “proper” scoring rules.) Accordingly, our bias term can be written as

E(C | f = E(F | z), h = E(H | z), q). For z = {f, m, q}, this reduces to E(C | f, h = E(H | f, m, q), q).

As an aside, note that for quadratic loss, this same expression would instead be identified with

noise + bias. This different way of interpreting the same expression reflects the difference between

measuring cost by comparing yH and yF versus doing it by comparing h and f.

Writing it for logarithmic scoring, the bias term for logarithmic scoring is

−Σy f(q, y)  ln { Σd P(d | f, m)∫ dh P(h | d) h(q, y) } .3

One difficulty with this expression is that its minimal value over all learning algorithms is

greater than zero. To take care of that I will subtract from this expression the additive constant of

its minimal value. That minimal value is given by the learning algorithm that always guesses h =

f, independent of the training set. Accordingly, our final measure for the “bias” for logarithmic

scoring is the Kullback-Leibler distance between the distribution f(q, .) and the average h(q, .).

With some abuse of notation, this can be written as follows:

(10)  biasls;f,m,q≡ −Σy  f(q, y) ln [ E(H(q, y) | f, m) / f(q, y) ] =

−Σy  f(q, y)

This definition of biasls;f,m,q meets desideratum (b).

Given these definitions, the “variance” for logarithmic scoring and conditioning on f, m, and

q, variancels;f,m,q, is fixed, and given by

(11) variancels;f,m,q  ≡ −Σy  f(q, y) { E(ln[ H(q, y) ] | f, m) - ln[ E(H(q, y) | f, m) ]}

= −Σy  f(q, y) { Σd  P(d | f, m) ∫ dh P(h | d) ln[h(q, y)]

−  ln[ Σd P(d | f, m)∫ dh P(h | d) h(q, y) ] } .

Combining, for logarithmic scoring,

ln  [ —————————————— ] .
f(q, y)

Σd P(d | f, m)∫ dh P(h | d) h(q, y)
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ditions (i) through (iv).

One natural way to measure intrinsic noise for logarithmic scoring is as the Shannon entropy

of f,

9) σls;f,m,q≡ −Σy  f(q, y) ln[f(q, y)].

Note that this definition meets all three parts of desideratum (a). It is also the “expected error of f

at guessing itself”, in close analogy to the intrinsic noise term for quadratic loss (see condition (i)).

To form an expression for logarithmic scoring that is analogous to the bias2 term for quadratic

loss, we cannot directly start with the terms involved in quadratic loss because they need not be

properly defined. (E.g., E(YF | z) is not defined for categorical spacesY, even though logarithmic

scoring is perfectly well defined for that case.) To circumvent this difficulty, first note that for qua-

dratic loss, expectedY values are the modes of optimal hypotheses (for quadratic loss, minimizing

expected loss means taking a meanY value, in general). In addition, squares of differences between

Y values are expected costs. Keeping this in mind, the bias2 term for quadratic loss can be rewritten

as the following sum:

Σy,y' L(y, y') δ(y, E(YF | f, q, m)) δ(y, E(YH | f, q, m)).

This is the expected quadratic loss between twoX-conditioned distributions overY given by

the two delta functions. The first of those distributions is what the optimal hypothesis would be if

the target were given by E(F | z) (for z = {f, m, q}, E(F | z) = f). More formally, the first of the two

distributions isδ(y, E(YF | z)) = argminh E(C | f = E(F | z), m, q, h). I will indicate this by defining

Opt(u) ≡ argminh E(C | f = u, m, q, h), where u is any distribution over Y. So this first of our two

distributions isOpt(E(F | z)).

For z = {f, m, q}, P(yF | f = E(H | z), q, m) = f(q, yF) evaluated for f =∫ dh h P(h | f, m, q) h.

I.e., it equals the vector∫ dh h P(h | f, m, q) evaluated for indices q and yF. By the properties of

vector spaces, this can be rewritten as∫ dh h(q, yF) P(h | f, m, q). However this is just

P(yH | f, q, m) evaluated for yH = yF. Accordingly, E(YH | f, q, m) = E(YF | f = E(H | z), q, m). So

the second of the two distributions in our expression for bias2  is what the optimal hypothesis would

be if the target were given by E(H | z): argminh E(C | f = E(H | z), m, q, h). We can indicate this

second optimal hypothesis byOpt(E(H | z)).

Combining, we can now rewrite the bias2 for quadratic loss as
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η, and as mentioned aboveη does not have the formal equal footing with f that h does. So rather

than a proper covariance between η and f, we instead have here an unconventional “covariance-

like” term. And this term does not disappear even for fixed f. As a sort of substitute, the covariance-

like term instead is uniquely determined by the values of the noise, bias, and variance, if f is fixed.

VIII  BIAS PLUS VARIANCE FOR LOGARITHMIC SCORING

i) The {f, m, q}-conditioned decomposition

To begin the analysis of bias-plus-variance for logarithmic scoring, consider the case where z

= {f, m, q}. The logarithmic scoring rule is given by

E(C | f, h, q)  =−Σy  f(q, y) ln[h(q, y)],

so

E(C | f, m, q) =−Σy  f(q, y)  Σd  P(d | f, m)∫ dh P(h | d) ln[h(q, y)].

Unlike quadratic loss, logarithmic scoring is not symmetric under f↔ h.

This scoring rule (sometimes instead referred to as the “log loss function”, and proportional to

the value of  the “logarithmic score function” for an infinite test set) can be appropriate when the

output of the learning algorithm h is meant to be a guess for the entire target distribution f [Bernar-

do and Smith, 1994]. This is especially true whenY is a categorical rather than a numeric space.

To understand that, consider the case where you guess h and have some “test set” T generated from

f that you wish to use to score h. How to do that? One obvious way is to score h as the log-likeli-

hood of T given h. If we now average this over all T generated from f, we get logarithmic scoring.

Note that logarithmic scoring can be used even when there is no metric structure onY (as there

must be for quadratic loss to be used).

In creating an analogy of the bias-plus-variance formula for cases where C is not given by qua-

dratic loss, one would like to meet conditions (i) through (iv) and (a) through (c) presented above.

However often there is no such thing as E(YF | f, q) when logarithmic scoring is used (i.e., oftenY

is not a metric space when logarithmic scoring is used). So we cannot measure intrinsic noise rel-

ative to-E(YF | f, q), as in the quadratic loss bias-plus-variance formula. This means that meeting

conditions (i) through (iv) will be impossible; the best we can do is come up with a formula whose

terms meet desiderata (a) through (c), and which have analogous behavior in some sense to the con-
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2 {  E[ R(~y*, η)  |  f, m, q] ×  f(q, ~y*)

-

        R(~y*, E[η |  f, m, q]) ×  f(q, ~y*) } .

(As an aside, note that for the zero-one R(., .), R(~y*, E[η |  f, m, q]) = 0, since by definition ~y*

is not the Y value that maximizes E[η |  f, m, q].)

Again following along with Friedman, have E[η |  f, m, q] fixed while increasing variability.

Next presume that that increase in ‘variability’ increases E[ R(~y*,η)  |  z ], as Friedman does.

(E[ R(~y*, η)  |  z ] gives the amount of “spill” of the learning algorithm’s guessη1 into ~y*, the

output label other than the one corresponding to the algorithm’s averageη1.) Doing all this will

always decrease the contribution to the expected error arising from the covariance term. As men-

tioned above, it will also always increase the variance term’s contribution to the expected error. So

long as f(q, ~y*) > 1/2, the former phenomenon will dominate the latter, and overall, expected error

will decrease. This condition on f(q, ~y*) is exactly the one that corresponds to Friedman’s ‘pecu-

liar behavior’; it means that the target is weighted towards the opposite Y value from the one given

by the expected guess of the learning algorithm.

So whether the peculiar behavior holds when one increases variability depends on whether the

associated increase in variance manages to offset the associated increase in covariance (this latter

increase resulting in a decrease in contribution to expected error). As in so much else having to do

with the bias-variance decomposition, we have a classical trade-off between two competing phe-

nomena both arising in response to the same underlying modification to the learning problem.

There is nothing ‘peculiar’ in this, but in fact only classical bias-variance phenomenology.

Nonetheless, it should be noted that for zero-one R, the covariance just equals 2 f(q, y*) times

the variance. Moreover, as was pointed out above, for zero-one R and z = {f, m, q}, noise + bias =

1 -  f(q, y*). So if noise and bias are held constant, it is impossible to change the variance while

“everything else is held constant” - the covariance will necessarily change as well, assuming the

bias and noise do not.

This behavior should not be too surprising. Since the zero-one loss can only take on two values,

one might expect that it is not possible for all four of noise, bias, variance, and covariance to be

independent. The reason for the precise dependency among those terms encountered here can be

traced to two factors: choosing z to equal {f, m, q}, and performing the analysis in terms ofη rather

than h. As discussed in previous sections, for decompositions involving h (rather thanη), the co-

variance term relates variability in h to variability in f, and therefore must vanish for the fixed f

induced by having z equal {f, m, q}. However in this section we are doing the analysis in terms of
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-

Sy≠y*  ( R(y, E[η | z]),   E[ F(Q, y)  |   z ] )   } .

For many R the expression on the first line of Eq. (8) is non-negative. For example, due to the

definition of y*, this is the case for the zero-one R. In addition, that expression does not involve f

directly, equals zero when the learning algorithm’s guesses never changes, etc. Accordingly, that

expression (often) meets the usual desiderata for a variance, and will here be identified as a vari-

ance.

Note that if everything else is kept constant while this variance is increased, then expected error

also increases  - there is none of the ‘peculiar behavior’ Friedman found  if one identifies variance

with this expression from Eq. (8). For the zero-one R, this variance term is the probability that the

y maximizingηy is not the one that maximizes the expectedηy.

The remaining terms in Eq. (8) collectively act like (the negative of) a covariance. Indeed, for

the case Friedman considers where r = 2, if we define ~y* as the element of Y that differs from y*,

we can write (the negative of) those terms as

2 {  E[ R(~y*, η) ×  F(Q, ~y*)  |  z]

-

        R(~y*, E[η |  z]) ×  E[ F(Q, ~y*)  |  z] }  .

Note the formal parallel between this expression for the “remaining terms in Eq. (8)” and the func-

tional forms of the covariance terms in the bias-variance decompositions for other costs that were

presented above.

Of course, the parallel isn’t exact. In particular, this expression isn’t exactly a covariance  - a

covariance would have an E[R | z]× E[f | z] type term rather than an R(.., E[ .. | z])× E[f | z]  term.

The presence of the R(., .) functional is also somewhat peculiar. Indeed, the simple fact that the

covariance term is non-zero for z = {f, m, q} is unusual (see the quadratic loss decomposition for

example).Ultimately, all these effects follow from the fact that the decomposition considered here

does not treat targets and hypotheses the same way; targets are represented by f’s, whereas hypoth-

eses are represented byη’s rather than h’s. (Recall that h is determined by the maximal component

of η.) If instead hypotheses were represented by h’s, then the zero-one loss decomposition would

involve a proper covariance, without any R(., .) functional [Kohavi and Wolpert, 1996].

It is the covariance term, not the variance term, which results in the possibility that an increase

in ‘variability’ reduces expected generalization error. To see this, along with Friedman, take z to

equal {f, m, q}. Then our covariance term becomes
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C = Σy≠y*  R(y, η)   + Σy≠y*  f(q, y)

 - Sy≠y*  ( R(y,ηy),  f(q, y) ) ,

if we use the shorthand

S{i}  ( g(i), h(i) ) ≡ Σi g(i) Σi h(i)  + Σi g(i) h(i) .

Now we must determine what noise + bias is. Sinceη and f don’t live in the same space, not

all of the desiderata listed previously are well-defined. Nonetheless, we can satisfy their spirit by

taking noise + bias to be E[ C( .,  E[η   |  z], q)  |  z), i.e., by taking it to be the expected value of C

when one guesses using the expected output of the learning algorithm. In particular, this definition

makes sense in light of desiderata (iii).

Writing it out, by using the multilinearity of S(., .) we see that for this definition noise + bias

is given by

Σy≠y*  R(y, E[η |  z])   + Σy≠y*  E[F(Q, y) | z ]

- Sy≠y*  ( R(y, E[η | z]),  E[F(., y) | z] ) .

(As a point of notation, “E[F(Q, y) | z ]” means∫ df Σq f(q, y) P(f, q | z); it is the y component of

the z-conditioned average target for average q.)

For the zero-one loss R(., .) Friedman considers,  R(y, E[η | z]) = 0 for all y≠ y*. Therefore

noise + bias reduces toΣy≠y*  E[F(Q, y) | z ]. For his z, {f, m, q}, this is just 1 -  f(q, y*). So for

Friedman’s r = 2 scenario, if the class corresponding to the learning algorithm’s averageη1 is the

same as the target’s average class, noise + bias is minyf(q, y). Otherwise it is maxyf(q, y). If we

identify minyf(q, y) with the noise term, this means that the bias either equals zero, or it equals

| f(q, y = 1) - f(q, y = 2) | , depending on whether the class corresponding to the learning algorithm’s

averageη1 is the same as the target’s average class.

Continuing with our more general analysis, the difference between E(C | z) and noise + bias is

8) Σy≠y*  E[ R(y,η)  |  z]   -   R(y, E[η |  z])

-

{    E[ Sy≠y*  ( R(y,η),  F(Q, y) )    |   z ]
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C   =   C(f,η, q)   = Σy [1  -  R(y,η)]  f(q, y)

     =  1  - Σy R(y, η)  f(q, y) .

It is required that R(y,η) be unchanged if one relabels both y and the components ofη simulta-

neously and in the same manner. As an example of an R, for the precise case Friedman considers,

there are two possible values of y, and R(y,η) = 1 for y = argmaxi(ηi), 0 for all other y.

Note that when expressed this way the cost is given by a dot product between two vectors in-

dexed by Y values, namely R and f. Moreover, for many R (e.g., the zero-one R), that dot product

is between two probability distributions over y. Note also that whereas h and f are on an equal foot-

ing in the EBF (cf. section 2, and in particular points (10) through (13)), the same is not true forη
and f. Indeed, whereas h and f arise in a symmetric manner in the zero-one loss cost (C(f, h, q) =

ΣyH,yF
 [1  - δ(yH, yF)] h(q, y)f(q, y)), the same is manifestly not true for the variablesη and f.

For fixedη and q respectively, for both the (Y-indexed) vector R(y,η) and the vector f(q, y)

there are only r - 1 free components, since in both cases the components must sum to 1. Accord-

ingly, as in Friedman’s analysis, here it makes sense to reduce the number of free variables to 2 r

- 2 by expressing one of the R components in terms of the others and similarly for one of the f com-

ponents.

A priori, it is not clear which such component should be re-expressed this way. Here I will

choose to re-express the component

y*(z)  ≡ argmaxy R(y, E[η |  z])

this way for both R and f. (For Friedman’s R(., .), this y*(z) is equivalent to the y maximizing

E([ηy | z]). So in the example above of the Friedman effect, y*(z) = class 1.) Accordingly, from

now on I will replace R(y*(z),η) with 1 -Σy≠y*(z) R(y, ηy) and I will replace f(q, y*(z)) with 1 -

Σy≠y*(z) f(q, y) wherever those terms appear. (From now on, when the context makes z clear I will

write “y*” rather than “y*(z)”.)

Having made these replacements, we can write

C   = Σy≠y*  R(y, η)   + Σy≠y*  f(q, y)

 -  { Σy≠y*  R(y, η) × Σy≠y*  f(q, y) }   - Σy≠y*  R(y, η) f(q, y) ,

which we can rewrite as
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lar, note that whether the Friedman effect obtains  - whether the “variability” term increases or di-

minishes expected error -   depends directly not only on the learning algorithm and the distribution

over training sets, but also on the target (the averageη1 must result in a guessed class label that

differs from the optimal prediction as determined by the target for the Friedman effect to hold).

This direct dependence of the Friedman effect on the target is an important clue. Recall in partic-

ular that our desiderata preclude identifying a term in the decomposition of expected error as

a”variance” if it has such a direct dependence. However such a dependence of the ‘variability’ term

could be allowed if the ‘variability’ that is being increased is not equated identically with a vari-

ance, but rather with a variancecombined with another quantity.

Given the general form of the bias-variance decomposition, the obvious choice for that other

quantity is a term reflecting a covariance. Indeed, by having that covariance involve varying over

yF values as well as training sets, we can readily imagine getting the direct dependence on the target

that arises in the Friedman effect.

In addition, viewing the variability as involving a covariance term along with a variance term

could potentially explain away the peculiarity of the Friedman effect’s having error shrink as vari-

ability increases. This would be the case for example if holding the covariance part of the variabil-

ity fixed while increasing the variance part alwaysdid increase expected generalization error. The

idea would be that the way that ‘variability’ is increased in the Friedman effect involves changes

to the covariance term as well as the variance term, and it is the changes to the covariance term that

are ultimately responsible for the reduction in expected generalization error. Increasing the vari-

ance term, by itself, can only increase expected error, exactly as in the conventional bias-plus-vari-

ance decomposition.

As it turns out, this hypothesized behavior is exactly what lies behind the Friedman effect. This

can best be seen by using a different decomposition from Friedman’s. In exploring that alternative

decomposition, we will see that there is nothing inherently unusual about how variance is related

to generalization error for zero-one loss; in this alternative decomposition, the decrease in gener-

alization error associated with increasing ‘variability’ is due to the covariance term rather than the

variance term. Common intuition is salvaged. This alternative to Friedman’s analysis has the ad-

ditional major advantage that it is valid even if the assumptions that Friedman’s analysis requires

do not hold. Moreover this alternative decomposition is additive rather than multiplicative, holds

for all algorithms, and in general avoids the other oddities of Friedman’s analysis.

Unfortunately, to clarify all this, it is easiest to work with somewhat generalized notation. (The

reader’s forbearance is requested.) The reason for this is that since it can only take on two values,

the zero-one loss can “hide” a lot of phenomena via “accidental cancellation” of terms and the like.

To have all such phenomena manifest we need the generalized notation.

First write the cost in terms of an abstraction of the expected zero-one loss:
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that even if the Gaussian in question is fairly peaked about a value well within [0, 1), that part of

the dependence of the integral on certain quantities that arises due to the presence of those quanti-

ties in the limits on the integration may be significant, in comparison to the other ways that that

integral depends on those quantities.) In addition, as Friedman defines it, bias can be negative.

Moreover, his bias does not reduce to zero for the Bayes classifier (and in fact the approximations

invoked in his analysis are singular for that classifier.) And perhaps most importantly, his defini-

tion of variance depends directly on the underlying target distribution f, rather than indirectly

through the f-induced distribution over training sets P(d | f,m, q). This last means that the “vari-

ance” term does not simply reflect how sensitive the learning algorithm is to (target-governed)

variability in the training set -  the variance also changes even if one makes a change to the target

that has no effect on the induced probability distribution over training sets.

These difficulties notwithstanding, Friedman’s analysis is a major contribution. Perhaps the

most important aspect of Friedman’s analysis is its drawing attention to the following phenome-

non: Consider the case where we’re interested in expected zero-one loss conditioned on a fixed tar-

get, test set question, and training set size. Presume further that we’re doing binary classification

(r = 2), so the class label probabilities guessed by the learning algorithm reduce to a single real

numberη1 giving the guessed probability of class 1 (i.e.,η = (η1, 1 -η1)). Examine the case where,

for the test set point at hand, the average (over training sets generated from f) value ofη1 is greater

than 1/2. So the guess corresponding to that averageη1 is class 1. However let’s say that the truly

optimal prediction (as determined by the target) is class 2. Now modify the scenario so that the

variability (over training sets) of the guessη1 grows, while its average stays the same (i.e., the

width of the distribution overη1 grows). Assume that this extra variability results in havingη1 <

1/2 for more training sets. So for more training sets, theη1 produced by the learning algorithm cor-

responds to the (correct) guess of class 2. Therefore increasing the ‘variability’ ofη1 while keeping

the average the same has reduced overall generalization error (!). Note that this effect only arises

when the average ofη1 results in a non-optimal prediction, i.e., only when that average is “wrong”.

(This point will be returned to shortly.)

Now view this ‘variability’ as, intuitively, akin to a variance. (This definition differs only a lit-

tle from the formal definition of variance Friedman advocates.) Similarly, view the ‘average’ ofη1

as giving a bias. Then we have the peculiar result that increasing variance while keeping bias fixed

can reduce overall expected generalization error. I will refer to such behavior as the “Friedman ef-

fect”. (See also [Breiman 1996], in particular the discussion in the first appendix.)

‘Variability’ can be identified with the width of the distribution overη1, and in that sense can

indeed be taken to be a ‘variance’. The question is whether it makes sense to view it as a ‘variance’

in the restricted desiderata-based sense appropriate to “bias-variance decompositions”. In particu-
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quadratic loss.

VII AN ALTERNATIVE ANALYSIS OF THE FRIEDMAN EFFECT

Kong and Dietterich recently [1995] raised the issue of what the appropriate bias-plus-variance

decomposition is for zero-one (misclassification) loss, L(yH, yF) = 1 -δ(yH, yF). They raised the

issue in the context of the classical conditioning event: the target, the training set size, and the test

set question. The decomposition they suggested (i.e., their suggested definitions of “bias” and

“variance” for zero-one loss) has several shortcomings. Not least of these is that decomposition’s

allowing negative variance. Several subsequent papers [Kohavi and Wolpert 1996, Wolpert and

Kohavi 1996, Tibshirani 1996, Breiman 1996] have offered alternative decompositions, with dif-

ferent strengths and weaknesses, as discussed in [Kohavi and Wolpert 1996, Wolpert and Kohavi

1996]. Recently Friedman contributed another zero-one loss decomposition [1996] to the discus-

sion.

Friedman’s decomposition only applies to learning algorithms that perform their classification

by first predicting the probabilitiesηy of all the possible output classes and then picking the class

argmaxi[ηi]. In other words, he considers cases where h is single-valued, but the value h(q)∈ Y is

determined by finding the maximum over the components of a Euclidean vector random variable

η, dependent on q and d, whose components always sum to 1 and are all non-negative. Intuitively,

theηy are the probabilities of the various possible YF values for q, as guessed by the learning al-

gorithm in response to the training set.

The restriction of Friedman’s analysis to such algorithms is not lacking in consequence. For

example, it rules out perhaps the simplest possible learning algorithm, one that is of great interest

in the computational learning community: from a set of candidate hypothesis input-output func-

tions, pick that one which best fits the training set. This restriction makes Friedman’s analysis less

general than the other zero-one loss decompositions that have been suggested.

There are several other peculiar aspects to Friedman’s decomposition. Oddly, it is multiplica-

tive in (its suggested definitions of) bias and variance rather than additive. This begs the question

of whether anything is gained by labelling those terms “bias” and “variance”, or if it invites con-

fusion to not given those terms new names.

 More importantly, it assumes that as one varies training sets d while keeping f, m, and q con-

stant, the induced distribution overη is Gaussian. It then further assumes that the truncation on in-

tegrals over such a Gaussian distribution imposed by the limits on the range of each of theηy (each

ηy ∈ [0, 1]) are irrelevant, so that erf functions can be replaced by integrals from -∞  to +∞ . (Note
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i) General properties of convex and/or concave loss functions

There are a number of other special properties of quadratic loss besides Eq.’s (1) through (6).

For example, for quadratic loss, for any f, E(C | f, m, q, algorithm A)≤ E(C | f, m, q, algorithm B)

so long as A’s guess is the average of B’s (formally, so long as we have P(yH | d, q, A) =

δ(yH, E(YH | d, q, B)) = δ(yH, Σy y h(q, y) P(h | d, B)). Sowithout any concerns for priors, one

can always construct an algorithm that is assuredly superior to an algorithm with a stochastic na-

ture: simply guess the stochastic algorithm’s average. (This is a result of Jensen’s inequality; see

[Wolpert 1995b, Perrone 1993].) This is true whether the stochasticity is due to non-single-valued

h or (as with backprop with a random initial weight) due to the learning algorithm’s being non-

deterministic.

Now the EBF is symmetric under h↔ f. Accordingly, this kind of result can immediately be

turned around. In such a form it says, loosely speaking, that a prior that is the “average” of another

prior assuredly results in lower expected cost,regardless of the learning algorithm. In this partic-

ular sense, for quadratic loss, one can place an algorithm-independent ordering over some priors.

(Of course, one can also order them in an algorithm-dependent manner if one wishes, for example

by looking at the expected generalization error of the Bayes-optimal learning algorithm for the pri-

or in question.)

The exact opposite behavior holds for loss functions that are concave rather than convex. For

such functions, guessing randomly is assuredly superior to guessing the average, regardless of the

target. (There is a caveat to this: one cannot have a loss function that is both concave everywhere

across an infiniteY and nowhere negative, so formally, this statement only holds if we know that

the yF and yH are both in a region of concave loss.)

ii) General properties of metric loss functions

Finally, there are other special properties that some loss functions possess but that quadratic

loss does not. For example, if the loss can be written as a function L(., .) that is a metric (e.g., ab-

solute value loss, zero-one loss), then for any f,

7)        | E(C | f, h1, m, q) - E(C | f, h2, m, q) |  ≤   Σy,y' L(y, y') h1(q, y) h2(q, y').

So for such loss functions, you can bound how much replacing h1 by h2 can improve / hurt gener-

alization by looking only at h1 and h2. That bound holds without any concern for the prior over f.

It is simply the expected loss between h1 and h2.

Unfortunately, quadratic loss is not a metric, and therefore one cannot employ this bound for
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Moreover, Eq. (4) holds even when z is not a subset of {f, m, q}. So for example, E(C | h, q)

can be expressed directly in terms of bias-plus-variance by using Eq. (4). However there is no sim-

ply way to express the same quantity in terms of Eq. (1).

Indeed, Eq. (4) even allows us to write the purely Bayesian quantity E(C | d) in bias-plus-vari-

ance terms, something we cannot do using Eq. (1):

6) E(C | d) =σd
2 + (biasd)

2 + varianced - 2covd,

where

σd
2 ≡  E(YF

2 | d) - [E(YF | d)]2,

biasd  ≡  E(YF | d) - E(YH | d),

varianced  ≡ E(YH
2 | d) - [E(YH | d)]2, and

covd ≡ ΣyF,yH
 P(yH, yF | d)× [yH - E(YH | d)] × [yF - E(YF | d)].

By using this formula one doesn’t even have to go to a “mid-way point” between Bayesian analysis

and conventional bias-plus-variance analysis to relate the two. Rather Eq. (6) directly provides a

fully Bayesian bias-plus-variance decomposition. So for example, as long as one is aware that dif-

ferent variables are being averaged over than are for the conventional bias-variance decomposition

(namely q and f rather than d), Eq. (6) allows us to directly say that for quadratic loss the Bayes-

optimal learning algorithm has zero bias.

None of this means that one “should not” use the appropriate average of Eq. (1) (in those cases

where there is such an average) rather than Eq. (4) and its corollaries. There are scenarios in which

that average provides a helpful perspective on the learning problem that Eq. (4) does not. For ex-

ample, if Y contains very few values (e.g., two) then in many scenarios biasf,m, which equals

Σq P(q | f, m) [E(YH | f, m, q) - E(YF | f, q)], is close to zero, regardless of the learning algorithm.

In the same scenarios though, the associated “q-average of Eq. (1)” term,Σq P(q | f, m) biasf,m,q
2

= Σq P(q | f, m) [E(YH | f, m, q) - E(YF | f, q)]2, is often far from zero. In such cases the bias term

in Eq. (5) is not very informative whereas the associated q-average term is.

In the end, which bias-plus-variance decomposition one uses, just like the choice of what vari-

ables z represents, depends on what one is trying to understand about one’s learning problem.

VI OTHER CHARACTERISTICS ASSOCIATED WITH THE LOSS
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for the one presented in the previous subsection, there is not a bias-variance dilemma. Rather there

is a bias-variance-covariance dilemma.

It is only for a rather specialized kind of analysis, where both q and f are fixed, that one can

ignore the covariance term. For almost all other analyses  - in particular the popular “generalization

error” analyses -  the huge body of lore explaining various aspects of supervised learning in terms

of a “bias-variance dilemma” is less than the whole story.

ii) Averaging over a random variable vs. having it be in z

Before leaving the topic of Eq.’s (4, 5), it should be pointed out that one could just as easily use

Eq. (1) and write   E(C | f, m) =Σq P(q | f, m) [σf,m,q
2  + biasf,m,q

2
 + variancef,m,q] rather than use

Eq. (5). Under commonly made assumptions (see [Wolpert 1994]) P(q | f, m) just equals P(q),

which is often called the “sampling distribution”. In such cases, this q-average of Eq. (1) is straight-

forward to evaluate.

It is instructive to compare such a q-average to the expansion in Eq. (5). First, such a q-average

is often less informative than Eq. (5). As an example, consider the simple case where f is single-

valued (i.e., a single-valued function fromX to Y), h is single-valued, and the same h is guessed

for all training sets sampled from f. ThenΣq P(q | f, m)σf,m,q
2  = Σq P(q | f, m) variancef,m,q = 0;

the q-averaged intrinsic noise and variance terms provide no useful information, and the expected

error is given solely by the bias term. On the other hand,σf,m
2  tells us the amount that f(q) varies

about its average (over q) value, and variancef,m is given by a similar term. In addition biasf,m tells

us the difference between those q-averages of f and of h. And finally, the covariance term tells us

how much our h “tracks” f as one moves acrossX. So all the terms in Eq. (5) provide helpful in-

formation, whereas the q-average of Eq. (1) reduces to the tautology “Σq P(q | f, m) E(C | f, m, q)

= Σq P(q | f, m) E(C | f, m, q)”.

In addition to this difficulty, in certain respects the individual terms in the q-average of Eq. 1

do not meet all of our desiderata. In particular, desideratum (b) is not met in general, if one tries to

identify “bias” asΣq P(q | f, m) biasf,m,q
2
 (note that here, the ‘z’ referred to in desideratum (b) is

{f, m}). On the other hand, the terms in Eq. (5) do meet all of our desiderata, including the third

part of (a). (The best possible algorithm if one is given f and m is the algorithm that always guess

h(q, y) =δ(y, E(YF | f)), regardless of the data.)

There are also “aesthetic” advantages to using Eq. (4) and its corollaries (like Eq. (5)) rather

than averages of Eq. (1). For example, Eq. (4) doesn’t treat z = {f, m, q} as special in any sense;

all z’s are treated equally. This contrasts with formulas based on Eq. (1), in which one writes

E(C | f, m) as a q-average of E(C | f, m, q), E(C | m, q) as an f-average of E(C | f, m, q), etc.
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(as opposed to applied) communities; it seems fair to say that it is far more commonly investigated

than is E(C | f, m, q) in both the machine learning and neural net literatures.

To address generalization error, note that for any set of random variables Z, taking (set) values

z,

4) E(C | z) =σz
2 + (biasz)

2 + variancez  - 2covz,

where

σz
2 ≡  E(YF

2 | z) - [E(YF | z)]2,

biasz  ≡  E(YF | z) - E(YH | z),

variancez  ≡ E(YH
2 | z) - [E(YH | z)]2, and

covz ≡ ΣyF,yH
 P(yH, yF | z)× [yH - E(YH | z)] × [yF - E(YF | z)].

The terms in this formula can (usually) be interpreted just as the terms in the conventional (z = {f,

m, q}) decomposition can. So for example variancez measures the variability of the learning algo-

rithm’s guess as one varies over those random variables not specified in z.

Eq. (2) is a special case of this formula where z = {m, q}, and Eq. (1) is a special case where z

= {f, m, q} (and consequently the covariance term vanishes). However both of these equations have

z contain q, when (by Eq. (4)) we could just as easily have z not contain q. By doing that we get a

correction to the bias-plus-variance formula for “generalization error”. (Note that this correction is

in no sense a “Bayesian” correction.) To be more precise, the following is an immediate corollary

of Eq. (4):

5) E(C | f, m) =σf,m
2 + (biasf,m)2 + variancef,m  - 2covf,m,

(with definitions of the terms given in Eq. (4)).

Note that corrections similar to that of Eq. (5) hold for E(C | f, d) and E(C | m). In all three of

these cases,σz
2, biasz, and variancez play the same role as doσf,m,q

2
, biasf,m,q, and variancef,m,q

in Eq. (1). The only difference is that different quantities are averaged over. (So for example, in

E(C | f, d), variance reflects variability in the learning algorithm’s guess as one varies q.)  In par-

ticular, most of our desiderata for these quantities are met.

In addition though, for all three of these cases, P(yH, yF | z)≠ P(yH | z) P(yF | z) in general, and

therefore the covariance correction term is non-zero, in general. So for these three cases, as well as
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σm,q
2. So the data-worth is the difference between the expected cost of this algorithm and that of

the Bayes-optimal algorithm.

Note the nice property that when the variance (as one varies training sets d) of the Bayes-opti-

mal algorithm is large, so is data-worth. So, reasonably enough, when the Bayes-optimal algo-

rithm’s variance is large, there is a large potential gain in paying attention to the data. Conversely,

if the variance for the Bayes-optimal algorithm is small, then not much can be gained by using it

rather the optimal data-independent learning algorithm.

As it must, E(C | m, q) reduces to the expression in Eq. (1) for E(C | f = f*, m, q) for the prior

P(f) = δ(f - f*). The special case of Eq. (2) where there is no noise, and the learning algorithm al-

ways guesses the same single-valued input-output function for the same training set, is given in

[Wolpert, 1995a].

One can argue that E(C | m, q) is usually of more direct interest than E(C | f, m, q), since one

can rarely specify the target in the real world but must instead be content to characterize it with a

probability distribution. Insofar as this is true, by Eq. (2) there is not a “bias-variance” trade-off,

as is conventionally stated. Rather there is a “bias-variance-covariance” trade-off.

More generally, one can argue that one shouldalways analyze the distribution P(C | z) where

z is chosen to directly reflect the statistical scenario with which one is confronted. (See the discus-

sion of the “honesty principle” at the end of [Wolpert 1995a]). In the real world, this usually entails

having z = {d}. In toy experiments with a fixed target, it usually means having z = {f, m}. For other

kinds of experiments it means other kinds of z’s.

The only justification for not setting z this way is calculational intractability of the resultant

analysis and/or difficulty in determining the distributions needed to perform that resultant analysis.

(This latter issue is why Bayesian analysis does not automatically meet our needs in the real world

- with such analysis there is often the issue of how to determine P(f), the prior.) However at the

level of abstraction of this paper, neither difficulty arises. So for example the ‘applicability’ of the

covariance terms introduced in this paper is determined solely by the statistical scenario with

which one is confronted.

V OTHER CORRECTIONS TO QUADRATIC LOSS BIAS-PLUS VARAIANCE

i) The general quadratic loss bias-plus-variance-plus-covariance decomposition

Often in supervised learning one is interested in “generalization error”, the average error be-

tween f and h over all q. For fixed f and m, the expectation of this error is E(C | f, m). This quantity

is ubiquitous in computational learning theory (COLT) as well as several other popular theoretical

approaches to supervised learning [Wolpert 1995a]. Nor is interest in it restricted to the theoretical
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This is intuitively reasonable. Indeed, the importance of such “tracking” between the learning

algorithm P(h | d) and the posterior P(f | d) is to be expected, given that E(C | m, q) can also be

written as a non-Euclidean inner product between P(f | d) and P(h | d). (This is true for any loss

function - see [Wolpert 1995a].)

ii) Discussion

The terms biasm,q, variancem,q, andσm,q play the same roles as biasf,m,q, variance, andσf,m,q

do in Eq. (1). The major difference is that here they involve averages over f according to P(f), since

the target f is not fixed. In particular, desiderata (b) and (c) are obeyed exactly by biasm,q and vari-

ancem,q. Similarly the first part of desideratum (a) is obeyed exactly, if the reference to “f” there is

taken to mean all f for which P(f) is non-zero, and if the delta functions referred to in (a) are im-

plicitly restricted to be identical (at q) for all such f. In additionσm,q
2 is independent of the learning

algorithm, in agreement with the second part of desideratum (a).

However now that we have the covariance term, the third part of desideratum (a) is no longer

obeyed. Indeed, by using P(d, yF | m, q) = P(yF | d, q) P(d | m, q) we can rewriteσm,q
2 as the sum

of the expected cost of the best possible (Bayes-optimal) learning algorithm for quadratic loss, that

is the loss of the learning algorithm that obeys P(yH | d, q) =δ(yH, E(YF | d, q)), plus another term.

(Here and throughout, any expression of the form “δ(., .)” indicates the Kronecker delta function.)

That term is called the “data-worth” of the problem, since as explained below, it sets how much of

an improvement in error can be had from paying attention to the data.

3) σm,q
2  = Σd,yF

 P(d, yF | m, q)  [yF  -  E(YF | d, q)]2      (the Bayes-optimal algorithm’s cost)

+

Σd P(d | m, q)  ( [E(YF | d, q)]2  -  [E(YF | m, q)]2 ) (the data-worth)

One might wonder why all of this does not also apply to the conventional bias-variance decompo-

sition for z = {f, m, q}. The reason is that for f-conditioned probabilities, the best possible algo-

rithm doesn’t guess E(YF | d, q) but rather E(YF | f, q). This is why this decomposition doesn’t also

apply toσf,m,q
2.

Note that for the Bayes-optimal learning algorithm, the data-worth is exactly covm,q. This is to

be expected, since for that learning algorithm biasm,q equals 0 and variancem,q equals covm,q.
2

To see why the data-worth measures how much paying attention to the data can help you to

guess f, note that the expected cost of the best possibledata-independent learning algorithm equals
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- the algorithm that always “by luck” guesses yH = E(YF | f, q), independent of d. (Indeed,

Breiman’s bagging scheme [Breiman 1994] is usually justified as a way to try to estimate that

“lucky” algorithm.) In addition, in this “mid-way” approach, rather than fix d as in the Bayesian

approach, one averages over d, as in bias-plus-variance. In this way one maintains the illustrative

power of the bias-plus-variance formula.

The result is the following “Bayesian correction” to the quadratic loss bias-plus-variance for-

mula [Wolpert 1995a]:

2) E(C | m, q) =σm,q
2 + (biasm,q)

2 + variancem,q  - 2covm,q,

where

σm,q
2 ≡  E(YF

2 | q) - [E(YF | q)]2,

biasm,q  ≡  E(YF | q) - E(YH | m, q),

variancem,q  ≡ E(YH
2 | m, q) - [E(YH | m, q)]2, and

covm,q ≡ ΣyF,yH
 P(yH, yF | m, q)× [yH - E(YH | m, q)]× [yF - E(YF | q)].

In this equation, the terms E(YF | q), E(YF
2 | q), E(YH | q, m) and E(YH

2 | q, m) are given by the

formulas just before Eq. (1), provided one adds an outer integral∫ df P(f), to average out f. To eval-

uate the covariance term, use P(yH, yF | m, q) =∫ dh df Σd P(yH, yF, h, d, f, | m, q). Then use the

simple identity

P(yH, yF, h, d, f, | m, q)  =  f(q, yF) h(q, yH) P(h | d) P(d | f, q, m) P(f).

Formally, the reason that the covariance term exists in Eq. (2) when there was none in Eq. (1)

is that yH and yF are conditionally independent if one is given f and q (as in Eq. (1)), but not only

given q (as in Eq. (2)). To illustrate the latter point, note that knowing yF , for example, tells you

something about f you don’t already know (assuming f is not fixed, as it is in Eq. (1)). This in turn

tells you something about d, and therefore something about h and yH. In this way yH and yF are

statistically coupled if f is not fixed.

Intuitively, the covariance term simply says that one would like the learning algorithm’s guess

to “track” the (posterior) most likely targets, as one varies training sets. Without such tracking, sim-

ply having low biasm,q and low variancem,q does not imply good generalization.
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(e.g., from a finite data set). If there were discontinuities and the target were near such a disconti-

nuity, the resultant estimates would often be poor. More generally, it would be difficult to ascribe

the usual intuitive meanings to the terms in the decomposition if they were discontinuous functions

of the target;

Desiderata (a) through (e) are somewhat more general than conditions (i) through (iv), in that (for

example) they are meaningful even ifY is a non-numeric space, so that expressions like “E(YF |

z)” are not defined. Accordingly, I will rely on them more than on conditions (i) through (iv) in the

extensions of the bias-plus-variance formula presented below.

In the final analysis though, both the conditions (i) through (iv) and the desiderata (a) through

(e) are not God-given principles that any bias-plus-variance decomposition must obey. Rather they

are useful aspects of the decomposition that facilitate that decompostion’s “intuitive and easy” in-

terpretation. There is nothing that precludes one’s using slight variants of these conditions, or per-

haps even replacing them altogether.

The next two sections show how to generalize the bias-plus-variance formula to other condi-

tioning events besides z = {f, m, q} while still obeying (almost all of) (i) through (iv) and (a)

through (c). First in section 4 the generalization to z = {m, q} is presented. Then in section 5, the

generalization to arbitrary z is explored.

IV THE MID-WAY POINT BETWEEN BAYESIAN ANALYSIS AND QUADRATIC

LOSS BIAS-PLUS-VARIANCE

i) Bias-plus-variance for when one averages over targets - the covariance correction

It is important to realize that illustrative as it is, the bias-plus-variance formula “examines the

wrong quantity”. In the real world, it is almost never E(C | f, m) that isdirectly of interest, but rather

E(C | d). (We know d, and therefore can fix its value in the conditioning event. We do not know f.)

Analyzing E(C | d) is the purview of Bayesian analysis [Buntine and Weigend 1991, Bernardo and

Smith 1994]. Generically, it says that for quadratic loss, one should guess the posterior average y

[Wolpert 1995a].

As conventionally discussed, E(C | d) does not bear any connection to the bias-plus-variance

formula. However there is a “mid-way” point between Bayesian analysis and the kind of analysis

that results in the bias-plus-variance formula.

In this middle approach, rather than fix f as in bias-plus-variance, one averages over it, as in

the Bayesian approach. In this way one circumvents the annoying fact that there need not be a bias-

variance trade-off, in that there exists an algorithm with both zero biasf,m,q and zero variancef,m,q
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algorithm, and the variance term to reflect the learning algorithm alone. In particular, for the usual

intuitive characterization of variance to hold, we want it to reflect how sensitive the algorithm is

to changes in the data set.

Note that althoughσz
2 appears to be identical to variancez if one simply replaces YF with YH,

the two quantities have different kinds of relations with the other random variables. For example,

for z = {f, m, q}, variancez depends on the target as well as the learning algorithm, whereasσz
2

only depends on the target.

So expected quadratic loss reflects noise in the target, plus the difference between the target

and the average guess, plus the variability in the guessing. In particular, we have the following

properties, which can be viewed as desiderata for our three terms:

a) If f is a delta function inY for q (i.e., if at the pointX = q, f is a single-valued function from X

to Y), the intrinsic noise term (i) equals 0. In addition, the intrinsic noise term is independent of the

learning algorithm. Finally, the intrinsic noise term is a lower bound on the error  - for no learning

algorithm can E(C | z) be lower than the intrinsic noise term. (In fact, for the decomposition in (1),

the intrinsic noise term is the greatest upper bound on that error);

b) If the average hypothesis-determined guess equals the average target-determined “guess”, then

biasz = 0. It is large if the difference between those averages is large;

c) Variance is non-negative, equals 0 if the guessed h is always the same single-valued function

(independent of d), and is large when the guessed h varies greatly in response to changes in d.

d) The variance does not depend on z directly, but only indirectly through the induced distribution

P(h | z). I.e., for any z, the associated variance is set by the h-dependence of P(h | z). Now P(h | z)

= Σd P(h | d, z) P(d | z). Moreover, it is often the case that P(h | d, z) = P(h | d). (E.g., this holds for

z = {f, m q}.) In such a case, if one knows the algorithm (i.e., if one know P(h | d)), then the h-

dependence of P(h | z) is set by the d-dependence of P(d | z). This means that changes to z that do

not affect the induced distribution over d do not affect the variance. As before, this is needed so

that the variance term reflects only how sensitive the algorithm is to changes in the training set.

e) All the terms in the decomposition are continuous functions of the target. This is particularly

desirable when one wishes to estimate those terms from limited information concerning the target
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pense of increased variance.

In addition, the terms in the bias-plus-variance formula all involve (functions of) expectation

values of the fundamental random variables described in the previous section - no new random

variables are involved. This means that the bias-plus-variance formula is particularly intuitive and

easy to interpret, as the discussion in the next subsection illustrates.

ii) Desiderata obeyed by the terms in the quadratic loss bias-plus-variance formula

To facilitate the generalization of the bias-plus-variance formula, define z≡ {f, m, q}, the set

of values of random variables we’re conditioning on in Eq. 1. Then intuitively, in Eq. 1, for the

point q,

i) σz
2 measures the intrinsic error due to the target f, independent of the learning algorithm. Here

it is given by E(C | h, z) / 2 for h = f, i.e., it equals half the expected loss of f at “guessing itself” at

the point q;

ii) The bias measures the difference between the average YH andthe average YF (where YF is

formed by sampling f and YH is formed by sampling h’s created from d’s that are in turn created

from f);

iii) Alternatively, σf,m,q
2 plus the squared bias measures the expected loss between YF and the av-

erage YH, E(  ( YF -  [E(YH | z)] )2  |  z);

iv) The variance measures the “variability” of the guessed yH about the average yH as one varies

over training sets (generated according to the given fixed value of z). If the learning algorithm al-

ways guesses the same h for the same d, and that h is always a single-valued function fromX to Y,

then the variance is given directly by the variability of the learning algorithm’s guess as d is varied.

v) It is worth pointing one special property for when z = {f, m, q}. For that case the variance does

not depend on f directly, but only indirectly through the induced distribution over training sets,

P(d | f, m, q). So for example consider having the target be changed in such a way that the resultant

distribution P(d | f, m, q) over training sets does not change. (For instance, this would be the case

if there were negligibly small probability that the q at hand exists in the training set, perhaps be-

cause n >> m.) Then the variance term does not change. This is desirable because we wish the in-

trinsic noise term to reflect the target alone, the bias to reflect the target’s relation with the learning
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-E(YH
2 | f, q, m)  = ∫ dh Σd P(d | f, q, m) P(h | d)Σy y

2 h(q, y),

where for succinctness the m-conditioning in the expectation values is not indicated if the expres-

sion is independent of m. These are, in order, the averageY andY2 values of the target (at q), and

of the average of the hypotheses made in response to training sets generated from the target (again,

evaluated at q). Note that these averages need not exist inY, in general. For example, this is almost

always the case ifY is binary.

Now write C = (YH - YF)2. Then simple algebra (use the conditional independence of YH and

YF) verifies the following formula:

1) E(C | f, m, q) =σf,m,q
2 + (biasf,m,q)

2 + variancef,m,q,

where

σf,m,q
2  ≡  E(YF

2 | f, q) - [E(YF | f, q)]2,

biasf,m,q ≡ -E(YF | f, q) - E(YH | f, q, m),

variancef,m,q  ≡ E(YH
2 | f, q, m) - [E(YH | f, q, m)]2.

The subscript {f,m,q} indicates the conditioning event for the expected error, and will become im-

portant below. When the conditioning event is clear, or not important, biasf,m,q may be referred to

simply as “the bias”, and similarly for the variance and the noise.

The bias-variance formula in [Geman et al. 1992] is a special case of Eq. (1), where the learning

algorithm always guesses the same h given the same training set d (something which is not the case

for backpropagation with a random initial weight, for example). In addition, in [Geman et al. 1992]

the hypothesis h that the learning algorithm guesses is always a single-valued mapping fromX to

Y.

Note that essentially no assumptions are made in deriving Eq. (1). Any likelihood is allowed,

any learning algorithm, and relationship between q and f and/or d, etc. This will be true for all of

the analysis in this paper.

In addition to such generality, the utility of the bias-plus-variance formula lies in the fact that

very often there is a “bias-variance” trade-off. For example, it may be that a modification to a learn-

ing algorithm improves its bias for the target at hand. (This often happens when more free param-

eters are incorporated into the learning algorithm’s model, for example.) But this is often at the ex-
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III BIAS PLUS VARIANCE FOR QUADRATIC LOSS

i) The bias-plus-variance formula

This section reviews the conventional bias-plus-variance formula for quadratic los, with a fixed

targets and averages over training sets. Write

-E(YF | f, q) = Σy y f(q, y),

-E(YF
2 | f, q) = Σy y

2 f(q, y),

-E(YH | f, q, m)  = ∫ dh Σd P(d | f, q, m) P(h | d)Σy y h(q, y), and

The setsX andY, of sizes n and r: The input and output space, respectively.

The set d, of mX-Y pairs: The training set.
TheX-conditioned distribution overY, f: The target, used to generate test sets.
TheX-conditioned distribution overY, h: The hypothesis, used to guess for test sets.
The real number c: The cost.

TheX-value q: The test set point.
TheY-value yF: The sample of the target f at point q.
TheY-value yH: The sample of the hypothesis h at point q.

P(h | d): The learning algorithm.
P(f | d): The posterior.
P(d | f): The likelihood.
P(f): The prior.

If c = L(yF, yH), L(., .) is the “loss function”. Otherwise c is given by a “scoring rule”.

Table 1: Summary of the terms in the EBF.
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As an example, for “logarithmic scoring”, P(c | f, h, q)  =δ{ c - Σy f(q, y) ln[h(q, y)] }. This

cost is (the logarithm of the geometric mean of) the probability one would assign to an infinite data

set generated according to the target f, if one had assumed (erroneously) that it was actually gen-

erated according to the hypothesis h.

15) The “generalization error function” used in much of supervised learning is given by c'≡

E(C | f, h, d). It is the average over all q of the cost c, for a given target f, hypothesis h, and train-

ing set d.

v) Miscellaneous

16) Note the implicit rule of probability theory that any random variable not conditioned on is mar-

ginalized over. So for example (using the conditional independencies in conventional supervised

learning), expected cost given the target, training set size, and test set point, is given by

E(C | f, m, q)   =∫ dhΣd E(C | h, d, f, q) P(h | d, f, q, m) P(d | f, q, m)

  = ∫ dhΣd E(C | f, h, q) P(h | d) P(d | f, q, m)

  = ∫ dh E(C | f, h, q) {Σd P(h | d) P(dY | f, dX) P(dX | f, m, q)}.

(I do not equate P(dX | f, q, m) with P(dX | m)  - as is conventionally (though implicitly) done in

most theoretical supervised learning -  because in general the test set point q may be coupled to dX

and even f. See [Wolpert 1995a].)
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some y. Such a distribution is a single-valued function fromX to Y. As an example, if one is using a neural

net as one’s regression through the training set, usually the (neural net) h is single-valued. On the other hand,

when one is performing probabilistic classification (as in softmax), h isn’t single-valued.

9) Any (!) learning algorithm (aka “generalizer”) is given by P(h | d), although writing down a learning al-

gorithm’s P(h | d) explicitly is often quite difficult. A learning algorithm is “deterministic” if the same d

always gives the same h. Backprop with a random initial weight is not deterministic. Nearest neighbor is.

10) The learning algorithm only sees the training set d, and in particular does not directly see the target. So

P(h | f, d) = P(h | d), which means that P(h, f | d) = P(h | d)× P(f | d), and therefore P(f | h, d)  =

P(h, f | d) / P(h | d)  =  P(f | d).

11) By definition of f, in supervised learning, YF and YH are conditionally independent given f and

q: P(yF, yH | f, q) = P(yF | yH, f, q) P(yH | f, q) = P(yF | f, q) P(yH | f, q).

12) Similarly, YF and YH are conditionally independent given d and q.

Proof:  P(yF, yH | d, q) = P(yF | d, q) P(yH | d, q, yF) =  P(yF | d, q) ∫ dh P(yH | h, d, q, yF)

P(h | d, q, yF) = P(yF | d, q) ∫ dh P(yH | h, q) P(h | d) = P(yF | d, q) ∫ dh P(yH | h, d, q) P(h | d, q) =

P(yF | d, q) P(yH | d, q). QED.

iv) The cost and “generalization error”

13) Given values of F, H, and a test set point q∈X, the associated “cost” or “error” is indicated by

the random variable C. Often C is a “loss function”, and can be expressed in terms of a mapping L

taking Y× Y to a real number. Formally, in these cases the probability that C takes on the value c,

conditioned on given values h, f and q, is P(c | f, h, q) =ΣyH,yF
 P(c | yH, yF) P(yH, yF | f, h, q) =

ΣyH,yF
δ{c -  L(yH, yF)}.h(q, yH) f(q, yF)1. As an example, quadratic loss has L(yH, yF) = (yH - yF)2,

so E(C | f, h, q) =ΣyH,yF
 f(q, yF) h(q, yH) (yH - yF)2.

14) Generically, when the distribution of c given f, h and q cannot be reduced in this way to a loss

function from Y× Y to R, it will be referred to as a “scoring rule”. Scoring rules are often appro-

priate when you’re trying to guess a distribution over Y, and loss functions are usually appropriate

when you are trying to guess a particular value in Y.
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set, yF and yH associated samples of the outputs of the two neural nets for that element (the sampling of yF

including the effects of the superimposed noise), and c the resultant “cost” (e.g., c could be (yF - yH)2).

ii) Training sets and targets

4) m is the number of elements in the (ordered) training set d. {dX(i), dY(i)} is the set of m input and output

values in d. m' is the number of distinct values in dX.

5) Targets f are always assumed to be of the form ofX-conditioned distributions overY, indicated by the

real-valued function f(x∈X, y ∈ Y) (i.e., P(yF | f, q) = f(q, yF)). Equivalently, where Sr is defined as the r-

dimensional unit simplex, targets can be viewed as mappings f:X → Sr . Note that any such target is a finite

set of real numbers indexed by anX-value and aY value.

Any restrictions on f are imposed by the full joint distribution P(f, h, d, c), and in particular by its mar-

ginalization, P(f). Note that any output noise process is automatically reflected in P(yF | f, q). Note also that

the definition P(yF | f, q) = f(q, yF) only directly refers to the generation of test set elements; in general, train-

ing set elements can be generated from targets in a different manner.

6) The “likelihood” is P(d | f). It says how d was generated from f. As an example, the conventional IID

likelihood isP(d | f)= Πm
i=1 π(dX(i)) × f(dX(i), dY(i)) (where π(x) is the “sampling distribution”). In other

words, under this likelihood d is created by repeatedly and independently choosing an input value dX(i) by

samplingπ(x), and then choosing an associated output value by sampling f(dX(i), .), the same distribution

used to generate test set outputs.

None of the results in this paper depend on the choice of the likelihood.

7) The “posterior” usually means P(f | d), and the “prior” usually means P(f).

iii) The learning algorithm

8) Hypotheses h are always assumed to be of the form ofX-conditioned distributions overY, indicated by

the real-valued function h(x∈X, y ∈ Y) (i.e., P(yH | h, q) = h(q, yH)). Equivalently, where Sr is defined as

the r-dimensional unit simplex, hypotheses can be viewed as mappings h:X → Sr . Note that any such hy-

pothesis is a finite set of real numbers.

Any restrictions on h are imposed by the full joint distribution P(f, h, d, c).

Here and throughout, a “single-valued” distribution is one that, for a given x, is a delta function about
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1. Readers unsure of any aspects of this synopsis, and in particular unsure of any of the formal basis of the

EBF or justifications for any of its assumptions, are directed to the detailed exposition of the EBF in appen-

dix A of [Wolpert 1996; paper 1].

i) Overview

1) The input and output spaces areX andY, respectively. For simplicity, they are taken to be finite. (This

imposes no restrictions on the real-world utility of the results in this paper, since in the real world data is

always analyzed on a finite digital computer, and is in based on the output of instruments having a finite

number of possible readings.)

The two spaces contain n and r elements respectively. A generic element ofX is indicated by ‘x’, and

a generic element ofY is indicated by ‘y’. Sometimes (e.g., when requiring a Bayes-optimal algorithm to

guess an expectedY value) it will implicitly be assumed thatY is a large set of real numbers that are very

close to one another, so that there is no significant difference between the element inY closest to some real

numberψ and that number itself.

2) Random variables are indicated using capital letters. Associated instantiations of a random variable are

indicated using lower case letters. Note though that some quantities (e.g., the spaceX) are neither random

variables nor instantiations of random variables, and therefore their written case carries no significance.

Only rarely will it be necessary to refer to a random variable rather than an instantiation of it. In partic-

ular, whenever possible, the argument of a probability distribution will be taken to indicate the associated

random variable. (E.g., whenever possible, “P(a)” will be written rather than “PA(a)”.)

In accord with standard statistics notation, “E(A | b)” will be used to mean the expectation value of A

given B = b, i.e., to mean ∫ da a P(a | b). (Sums replace integrals if appropriate.)

3) The primary random variables are the hypothesisX-Y relationship output by the learning algorithm (in-

dicated by H), the target (i.e., “true”)X-Y relationship (F), the training set (D), and the real world cost (C).

These variables are related to one another through other random variables representing the (test set) in-

put space value (Q), and the associated target and hypothesisY-values, YF and YH respectively (with in-

stantiations yF and yH respectively).

This completes the list of random variables. Formal definitions of them appear below.

As an example of the relationship between these random variables and supervised learning, f, a partic-

ular instantiation of a target, could refer to a “teacher” neural net together with superimposed noise. This

noise-corrupted neural net generates the training set d. The hypothesis h on the other hand could be the neu-

ral net made by one’s “student” algorithm after training on d. Then q would be an input element of the test
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distribution over the output space rather than a single guessed output value. In those scenarios

“scoring rules” are usually a more appropriate form of measuring generalization performance than

are loss functions. This paper ends by presenting extensions of the fixed-target version of the bias-

plus-variance formula to the logarithmic and quadratic scoring rules, and then presents the associ-

ated additive corrections to those formulas. (“Scoring rules” as explored in this paper are similar

to what are called “score functions” in the statistics literature [Bernardo and Smith 1994].)

All of the correction terms presented in this paper are a covariance, between the learning algo-

rithm and the posterior distribution over targets. Accordingly, in the (very common) contexts in

which they apply, there is not a “bias-variance trade-off”, or a “bias-variance dilemma”, as one of-

ten hears. Rather there is a bias-variance-covariance trade-off.

Section 2 of this paper presents the formalism that will be used in the rest of the paper. Section

3 uses this formalism to recapitulate the traditional bias-plus-variance formula. Certain desiderata

that the terms in the bias-plus-variance decomposition should meet are also presented there. Sec-

tions 4 and 5 then present the corrections to this formula appropriate for quadratic loss. Section 6

discusses some other loss-function-specific aspects of supervised learning.

Recently Friedman drew attention to an important aspect of expected error for zero-one loss [].

His analysis appeared to indicate that under certain circumstances, when (what he identified as) the

variance increased it could result indecreased generalization error. In Section 7, it is shown how

to perform a bias-variance decomposition for Friedman’s scenario where common-sense charac-

teristics of bias and variance (like error being an increasing function of each) are preserved. This

discussion serves as a useful illustration of the utility of covariance terms, since it is the presence

of that term that explains Friedman’s apparently counter-intuitive results.

Section 8 then begins presenting the extensions of the bias-plus-variance formula for scoring-

rule-based rather than loss function-based error. That section investigates logarithmic scoring. Sec-

tion 9 investigates quadratic scoring. Finally, section 10 discusses future work.

II NOMENCLATURE

This paper use the Extended Bayesian Formalism [Wolpert 1996, Wolpert 1994a, Wolpert 1992]. In the

current context, the EBF is just conventional probability theory, applied to the case where one has a different

random variable for the hypothesis output by the learning algorithm and for the target relationship. It is this

crucial extension that separates the EBF from conventional Bayesian analysis, and that allows the EBF (un-

like conventional Bayesian analysis) to subsume all other major mathematical treatments of supervised

learning like computational learning theory, sampling theory statistics, etc. (See [Wolpert 1994a].)

This section presents a synopsis of the EBF. A quick reference of this synopsis can be found in Table



2

I INTRODUCTION

The bias-plus-variance formula [Geman et al. 1992] is an extremely powerful tool for analyz-

ing supervised learning scenarios that have quadratic loss functions, fixed targets, and averages

over training sets. Indeed there is little doubt that it is the most frequently cited formula in the sta-

tistical literature for analyzing such scenarios. Despite this breadth of utility in such scenarios how-

ever, the bias-plus-variance formula has never previously been extended to other learning scenar-

ios.

In this paper an additive correction to the formula is presented, appropriate for learning scenar-

ios where the target is not fixed. The associated formula for expected loss constitutes a “mid-way

point” between Bayesian analysis and conventional bias-plus-variance analysis, in that both targets

and training sets are averaged over.

After presenting this correction other correction terms are presented, appropriate for when oth-

er sets of random variables are averaged over. In particular, the correction term to the bias-plus-

variance formula for when the test set point is not fixed  - as it is not in almost all of computational

learning theory as well as most other investigations of “generalization error” -  is presented. (The

conventional bias-plus-variance formula has the test point fixed.) In addition, it is shown how to

cast conventional Bayesian analysis (where the training is fixed but targets are averaged over) di-

rectly in terms of bias-plus-variance. All of this serves to emphasize that the conventional bias-

plus-variance decomposition is only a very specialized case of a much more general and important

phenomenon.

Next is a brief discussion of some other loss-function-specific properties of supervised learn-

ing. In particular, it is shown how with quadratic loss there is a scheme that assuredly, independent

of the target, improves the performance of any learning algorithm with a random component. On

the other hand, using the same scheme for concave loss functions results in assured degradation of

performance. It is also shown that, without any concern for the target, one can bound the change

in zero-one loss generalization error associated with making some guess h1 rather than a different

guess h2. (This is not possible for quadratic loss.)

All of these extensions to the conventional version of the bias-plus-variance formula use the

same quadratic loss function occurring in the conventional formula itself. That loss function is of-

ten appropriate when the output spaces is numeric. Kong and Dietterich recently proposed an ex-

tension of the conventional (fixed target, training set-averaged) formula to the zero-one loss func-

tion [Kong and Dietterich 1995]. (See also the forthcoming papers [Wolpert and Kohavi 1996, Ko-

havi and Wolpert 1996].) That loss function is often appropriate when one’s output space is

categorical rather than numeric.

For such categorical output spaces sometimes one’s algorithm produces a guessed probability



ON BIAS PLUS VARIANCE

by

David H. Wolpert

TXN Inc., and The Santa Fe Institute

Currently at IBM Almaden Research Center, N5Na/D3, 650 Harry Rd., San Jose, CA 95120

dhw@almaden.ibm.com

 SFI TR 95-08-074

Abstract: This paper presents several additive “corrections” to the conventional quadratic loss bias-

plus-variance formula. One of these corrections is appropriate when both the target is not fixed (as

in Bayesian analysis) and also training sets are averaged over (as in the conventional bias-plus-

variance formula). Another additive correction casts conventional fixed-training-set Bayesian

analysis directly in terms of bias-plus-variance. Another correction is appropriate for measuring

full generalization error over a test set rather than (as with conventional bias-plus-variance) error

at a single point. Yet another correction can help explain the recent counter-intuitive bias-variance

decomposition of Friedman for zero-one loss. After presenting these corrections this paper then

discusses some other loss-function-specific aspects of supervised learning. In particular, there is a

discussion of the fact that if the loss function is a metric (e.g., zero-one loss), then there is bound

on the change in generalization error accompanying changing the algorithm’s guess from h1 to h2

that depends only on h1 and h2 and not on the target. This paper ends by presenting versions of the

bias-plus-variance formula appropriate for logarithmic and quadratic scoring, and then all the ad-

ditive corrections appropriate to those formulas. All the correction terms presented in this paper

are a covariance, between the learning algorithm and the posterior distribution over targets. Ac-

cordingly, in the (very common) contexts in which those terms apply, there is not a “bias-variance

trade-off”, or a “bias-variance dilemma”, as one often hears. Rather there is a bias-variance-cova-

riance trade-off.


